Simple basis coordinates | Epsilon coordinates | Reflection w.r.t. root |
(-1, -1, -1, -1) | -e_{1}+e_{5} | \(s_{1}s_{2}s_{3}s_{4}s_{3}s_{2}s_{1}\) |
(0, -1, -1, -1) | -e_{2}+e_{5} | \(s_{2}s_{3}s_{4}s_{3}s_{2}\) |
(-1, -1, -1, 0) | -e_{1}+e_{4} | \(s_{1}s_{2}s_{3}s_{2}s_{1}\) |
(0, 0, -1, -1) | -e_{3}+e_{5} | \(s_{3}s_{4}s_{3}\) |
(0, -1, -1, 0) | -e_{2}+e_{4} | \(s_{2}s_{3}s_{2}\) |
(-1, -1, 0, 0) | -e_{1}+e_{3} | \(s_{1}s_{2}s_{1}\) |
(0, 0, 0, -1) | -e_{4}+e_{5} | \(s_{4}\) |
(0, 0, -1, 0) | -e_{3}+e_{4} | \(s_{3}\) |
(0, -1, 0, 0) | -e_{2}+e_{3} | \(s_{2}\) |
(-1, 0, 0, 0) | -e_{1}+e_{2} | \(s_{1}\) |
(1, 0, 0, 0) | e_{1}-e_{2} | \(s_{1}\) |
(0, 1, 0, 0) | e_{2}-e_{3} | \(s_{2}\) |
(0, 0, 1, 0) | e_{3}-e_{4} | \(s_{3}\) |
(0, 0, 0, 1) | e_{4}-e_{5} | \(s_{4}\) |
(1, 1, 0, 0) | e_{1}-e_{3} | \(s_{1}s_{2}s_{1}\) |
(0, 1, 1, 0) | e_{2}-e_{4} | \(s_{2}s_{3}s_{2}\) |
(0, 0, 1, 1) | e_{3}-e_{5} | \(s_{3}s_{4}s_{3}\) |
(1, 1, 1, 0) | e_{1}-e_{4} | \(s_{1}s_{2}s_{3}s_{2}s_{1}\) |
(0, 1, 1, 1) | e_{2}-e_{5} | \(s_{2}s_{3}s_{4}s_{3}s_{2}\) |
(1, 1, 1, 1) | e_{1}-e_{5} | \(s_{1}s_{2}s_{3}s_{4}s_{3}s_{2}s_{1}\) |
roots simple coords | epsilon coordinates | [,] | g_{-10} | g_{-9} | g_{-8} | g_{-7} | g_{-6} | g_{-5} | g_{-4} | g_{-3} | g_{-2} | g_{-1} | h_{1} | h_{2} | h_{3} | h_{4} | g_{1} | g_{2} | g_{3} | g_{4} | g_{5} | g_{6} | g_{7} | g_{8} | g_{9} | g_{10} |
(-1, -1, -1, -1) | -e_{1}+e_{5} | g_{-10} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-10} | 0 | 0 | g_{-10} | g_{-9} | 0 | 0 | -g_{-8} | g_{-7} | 0 | -g_{-5} | g_{-4} | -g_{-1} | -h_{4}-h_{3}-h_{2}-h_{1} |
(0, -1, -1, -1) | -e_{2}+e_{5} | g_{-9} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-10} | -g_{-9} | g_{-9} | 0 | g_{-9} | 0 | g_{-7} | 0 | -g_{-6} | 0 | g_{-4} | -g_{-2} | 0 | -h_{4}-h_{3}-h_{2} | -g_{1} |
(-1, -1, -1, 0) | -e_{1}+e_{4} | g_{-8} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-10} | 0 | 0 | 0 | g_{-8} | 0 | g_{-8} | -g_{-8} | g_{-6} | 0 | -g_{-5} | 0 | g_{-3} | -g_{-1} | 0 | -h_{3}-h_{2}-h_{1} | 0 | g_{4} |
(0, 0, -1, -1) | -e_{3}+e_{5} | g_{-7} | 0 | 0 | 0 | 0 | 0 | g_{-10} | 0 | 0 | g_{-9} | 0 | 0 | -g_{-7} | g_{-7} | g_{-7} | 0 | 0 | g_{-4} | -g_{-3} | 0 | 0 | -h_{4}-h_{3} | 0 | -g_{2} | -g_{5} |
(0, -1, -1, 0) | -e_{2}+e_{4} | g_{-6} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-9} | 0 | 0 | g_{-8} | -g_{-6} | g_{-6} | g_{-6} | -g_{-6} | 0 | g_{-3} | -g_{-2} | 0 | 0 | -h_{3}-h_{2} | 0 | -g_{1} | g_{4} | 0 |
(-1, -1, 0, 0) | -e_{1}+e_{3} | g_{-5} | 0 | 0 | 0 | -g_{-10} | 0 | 0 | 0 | -g_{-8} | 0 | 0 | g_{-5} | g_{-5} | -g_{-5} | 0 | g_{-2} | -g_{-1} | 0 | 0 | -h_{2}-h_{1} | 0 | 0 | g_{3} | 0 | g_{7} |
(0, 0, 0, -1) | -e_{4}+e_{5} | g_{-4} | 0 | 0 | g_{-10} | 0 | g_{-9} | 0 | 0 | g_{-7} | 0 | 0 | 0 | 0 | -g_{-4} | 2g_{-4} | 0 | 0 | 0 | -h_{4} | 0 | 0 | -g_{3} | 0 | -g_{6} | -g_{8} |
(0, 0, -1, 0) | -e_{3}+e_{4} | g_{-3} | 0 | 0 | 0 | 0 | 0 | g_{-8} | -g_{-7} | 0 | g_{-6} | 0 | 0 | -g_{-3} | 2g_{-3} | -g_{-3} | 0 | 0 | -h_{3} | 0 | 0 | -g_{2} | g_{4} | -g_{5} | 0 | 0 |
(0, -1, 0, 0) | -e_{2}+e_{3} | g_{-2} | 0 | 0 | 0 | -g_{-9} | 0 | 0 | 0 | -g_{-6} | 0 | g_{-5} | -g_{-2} | 2g_{-2} | -g_{-2} | 0 | 0 | -h_{2} | 0 | 0 | -g_{1} | g_{3} | 0 | 0 | g_{7} | 0 |
(-1, 0, 0, 0) | -e_{1}+e_{2} | g_{-1} | 0 | -g_{-10} | 0 | 0 | -g_{-8} | 0 | 0 | 0 | -g_{-5} | 0 | 2g_{-1} | -g_{-1} | 0 | 0 | -h_{1} | 0 | 0 | 0 | g_{2} | 0 | 0 | g_{6} | 0 | g_{9} |
(0, 0, 0, 0) | 0 | h_{1} | -g_{-10} | g_{-9} | -g_{-8} | 0 | g_{-6} | -g_{-5} | 0 | 0 | g_{-2} | -2g_{-1} | 0 | 0 | 0 | 0 | 2g_{1} | -g_{2} | 0 | 0 | g_{5} | -g_{6} | 0 | g_{8} | -g_{9} | g_{10} |
(0, 0, 0, 0) | 0 | h_{2} | 0 | -g_{-9} | 0 | g_{-7} | -g_{-6} | -g_{-5} | 0 | g_{-3} | -2g_{-2} | g_{-1} | 0 | 0 | 0 | 0 | -g_{1} | 2g_{2} | -g_{3} | 0 | g_{5} | g_{6} | -g_{7} | 0 | g_{9} | 0 |
(0, 0, 0, 0) | 0 | h_{3} | 0 | 0 | -g_{-8} | -g_{-7} | -g_{-6} | g_{-5} | g_{-4} | -2g_{-3} | g_{-2} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{2} | 2g_{3} | -g_{4} | -g_{5} | g_{6} | g_{7} | g_{8} | 0 | 0 |
(0, 0, 0, 0) | 0 | h_{4} | -g_{-10} | -g_{-9} | g_{-8} | -g_{-7} | g_{-6} | 0 | -2g_{-4} | g_{-3} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{3} | 2g_{4} | 0 | -g_{6} | g_{7} | -g_{8} | g_{9} | g_{10} |
(1, 0, 0, 0) | e_{1}-e_{2} | g_{1} | -g_{-9} | 0 | -g_{-6} | 0 | 0 | -g_{-2} | 0 | 0 | 0 | h_{1} | -2g_{1} | g_{1} | 0 | 0 | 0 | g_{5} | 0 | 0 | 0 | g_{8} | 0 | 0 | g_{10} | 0 |
(0, 1, 0, 0) | e_{2}-e_{3} | g_{2} | 0 | -g_{-7} | 0 | 0 | -g_{-3} | g_{-1} | 0 | 0 | h_{2} | 0 | g_{2} | -2g_{2} | g_{2} | 0 | -g_{5} | 0 | g_{6} | 0 | 0 | 0 | g_{9} | 0 | 0 | 0 |
(0, 0, 1, 0) | e_{3}-e_{4} | g_{3} | 0 | 0 | g_{-5} | -g_{-4} | g_{-2} | 0 | 0 | h_{3} | 0 | 0 | 0 | g_{3} | -2g_{3} | g_{3} | 0 | -g_{6} | 0 | g_{7} | -g_{8} | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, 1) | e_{4}-e_{5} | g_{4} | g_{-8} | g_{-6} | 0 | g_{-3} | 0 | 0 | h_{4} | 0 | 0 | 0 | 0 | 0 | g_{4} | -2g_{4} | 0 | 0 | -g_{7} | 0 | 0 | -g_{9} | 0 | -g_{10} | 0 | 0 |
(1, 1, 0, 0) | e_{1}-e_{3} | g_{5} | -g_{-7} | 0 | -g_{-3} | 0 | 0 | h_{2}+h_{1} | 0 | 0 | g_{1} | -g_{2} | -g_{5} | -g_{5} | g_{5} | 0 | 0 | 0 | g_{8} | 0 | 0 | 0 | g_{10} | 0 | 0 | 0 |
(0, 1, 1, 0) | e_{2}-e_{4} | g_{6} | 0 | -g_{-4} | g_{-1} | 0 | h_{3}+h_{2} | 0 | 0 | g_{2} | -g_{3} | 0 | g_{6} | -g_{6} | -g_{6} | g_{6} | -g_{8} | 0 | 0 | g_{9} | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 1, 1) | e_{3}-e_{5} | g_{7} | g_{-5} | g_{-2} | 0 | h_{4}+h_{3} | 0 | 0 | g_{3} | -g_{4} | 0 | 0 | 0 | g_{7} | -g_{7} | -g_{7} | 0 | -g_{9} | 0 | 0 | -g_{10} | 0 | 0 | 0 | 0 | 0 |
(1, 1, 1, 0) | e_{1}-e_{4} | g_{8} | -g_{-4} | 0 | h_{3}+h_{2}+h_{1} | 0 | g_{1} | -g_{3} | 0 | g_{5} | 0 | -g_{6} | -g_{8} | 0 | -g_{8} | g_{8} | 0 | 0 | 0 | g_{10} | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 1, 1, 1) | e_{2}-e_{5} | g_{9} | g_{-1} | h_{4}+h_{3}+h_{2} | 0 | g_{2} | -g_{4} | 0 | g_{6} | 0 | -g_{7} | 0 | g_{9} | -g_{9} | 0 | -g_{9} | -g_{10} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(1, 1, 1, 1) | e_{1}-e_{5} | g_{10} | h_{4}+h_{3}+h_{2}+h_{1} | g_{1} | -g_{4} | g_{5} | 0 | -g_{7} | g_{8} | 0 | 0 | -g_{9} | -g_{10} | 0 | 0 | -g_{10} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(4/5, 3/5, 2/5, 1/5) | = | \(\displaystyle 4/5\varepsilon_{1}-1/5\varepsilon_{2}-1/5\varepsilon_{3}-1/5\varepsilon_{4}-1/5\varepsilon_{5}\) |
(3/5, 6/5, 4/5, 2/5) | = | \(\displaystyle 3/5\varepsilon_{1}+3/5\varepsilon_{2}-2/5\varepsilon_{3}-2/5\varepsilon_{4}-2/5\varepsilon_{5}\) |
(2/5, 4/5, 6/5, 3/5) | = | \(\displaystyle 2/5\varepsilon_{1}+2/5\varepsilon_{2}+2/5\varepsilon_{3}-3/5\varepsilon_{4}-3/5\varepsilon_{5}\) |
(1/5, 2/5, 3/5, 4/5) | = | \(\displaystyle 1/5\varepsilon_{1}+1/5\varepsilon_{2}+1/5\varepsilon_{3}+1/5\varepsilon_{4}-4/5\varepsilon_{5}\) |
(1, 0, 0, 0) | = | \(\displaystyle \varepsilon_{1}-\varepsilon_{2}\) |
(0, 1, 0, 0) | = | \(\displaystyle \varepsilon_{2}-\varepsilon_{3}\) |
(0, 0, 1, 0) | = | \(\displaystyle \varepsilon_{3}-\varepsilon_{4}\) |
(0, 0, 0, 1) | = | \(\displaystyle \varepsilon_{4}-\varepsilon_{5}\) |